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Reaction of SiMe, or CH,(SiMe,), in n-C,H,, with LiBu"(pmdeta) affords in high yield Li(CH,SiMe3)- 
(pmdeta) or Li{CH (SiMe3)*; (pmdeta), (2), respectively, the latter also being available from Li(CH(SiMe,),)- 
(tmeda), ( I ) ,  and pmdeta; crystalline compounds (1) and (2) are monomers (ebullaoscopy, C6HI2) ,  and for (2) 
this is also shown by X-ray crystallography, with the short Li-C distance [2.13(5) A] indicative of a covalent 
bond. 

Organolithium adducts of nitrogen- or oxygen-containing 
donors usually possess oligomeric structures.l We draw 
attention to two monomeric lithium alkyls: (a) the formally 
electron-deficient (6e) LiR(tmeda), (l), and (b) the electron- 
precise (&) LiR(pmdeta) [tmeda = tetramethylethylenedi- 
amine, pmdeta = pentamethyldiethylenetriamine, and R = 

CH(SiMe,),]. Noteworthy features include (i) simple essen- 
tially quantitative preparative procedures (reactions i and ii 
of Scheme 1)  [direct metallation of the silylated hydrocarbon 
CH,(SiMe,),, (3), for (1) or (2); or of SiMe, for Li(CH,SiMe,)- 
(pmdeta), (4)], (ii) the isolation of pure crystalline alkyl- 
lithium reagents (1) or (2), (iii) the exchange of co-ordinated 
tmeda by pmdeta (step iii of Scheme l), and (iv) an X-ray 
structure analysis of LiR(pmdeta), (2), representing the first1 
structurally characterised monomeric lithium alkyl in which 
the alkyl moiety is void of electron-rich or aryl a-substituents. 

Whereas lithiation of SiMe, with LiBun(tmeda) gave partial 
substitution of both SiMe, and tmeda substrates,2 use of LiBut 
in the presence of tmeda resulted in only ca. 40% lithiation of 
SiMe,., In contrast, we now find that almost quantitative 
SiMe, metallation occurs when using LiBun(pmdeta), as 
determined by n.m.r. spectroscopy; the product Li(CH,SiMe,)- 
(pmdeta), (4), is a viscous liquid and was derivatised (reaction 
iv in Scheme 1) as CH,(SiMe,),, (3). This is a further example 
of the increased reactivity and superior selectivity of pmdeta 
compared with tmeda in lithiations (cJ,, reactions of cx-tri- 
methylsilyl-o-xylenes). Solutions containing LiCH(SiMe,), 
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,Me3Si C., 
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Scheme 1. Reagents and conditions: i ,  LiBu" in CeH14 (1 mol) + 
tmeda ( 1  mol), 12 h, 25 ?C, colourless crystals of (1) (m.p. 49 - 
50 "C) from C,H,, at -78 'C; i i ,  LiBu" in C,H,, (1 mol) + 
pmdeta ( I  mol), 3 h, 20 'C, colourless crystals of (2) (m.p. 230-- 
232 "C) from C,H,, at -30 C ;  iii, (1) in CsH6, pmdeta (1 mol), 

h, 0 "C; iv, SiClMe, in C,H,,. 

t No reprints available. 

were previously accessible from either CICH(SiMe,), (using Li 
metal)5 or CH,(SiMe,), [using LiBut in  tetrahydrofuran (t  hf)  
with P(O)(NMe,), (hmpa) at --78 oC].6 We now show that 
metallation of CH,(SiMe,), does not require the highly reactive 
LiBut, but is effective with the readily accessible LiBun. 
Moreover, a feature of the use of tmeda or pmdeta is the 
ability to isolate crystalline LiR(base), (1) or (2), in excellent 
yield (ca. 80%). 

The bis(trimethylsily1)methyl-lithium base adducts (1) and 
(2) have been characterised by microanalysis and n.m.r. 
spectroscopy,: derivatisation to give CH(SiMe,), (see iv i n  

d 

Figure 1. Molecular structure of Li {CH(Si Me,),}(pmdeta), (2). 
Selected bond lengths (A) and angles ( ): Li-C 2.13(5), LiLN(2) 
2.30(4), Li-N(1) 2.27(5), Li-N(3) 2.20(4), Si(l )-C 1.78(3), Si(2)-C 
1.79(3), <Si-CH,p I.&, (N(Z)-CH,/ l.44, :N(2)-CH2 2 
I .4, ; C-LiGN(2) 134(2), C-Li-N( 1) I 13(2), C-Li-N(3) 129(2), 
N(2)-Li-N(I) 79(2), N(2)-Li -N(3) 80(2), N(I)-Li-N(3) 1 1  1(2), 
Si(l)-C-Si(2) 124(2), Li-C-Si( I )  117(2), Li-C-Si(2) 1 12(2). 

$ lH N.m.r. (C,D,) ~ : ( 1 )  8.19 (s, H,C-N), 8.38 ( 5 ,  CH,), 9.68 (s, 
H,C-Si), and 11.76 (s, HC); (2) 8. I (amine H unresolved), 9.75 
(s, H,C-Sl), and 12.1 (s, HC); (4) 8.1 (amlne H unresolved), 9.64 
(H3C-Si), and 11.67 (s, H,C-Li). 13C{lH ] n.m.r. (C,D,, SiMe,) 
(1) 56.0 (s, H,C-N), 45.2 (s, CH,), 6.8 (s, CH,--Si), and 2.1 p.p.m. 

CH,), 7.6 (s, CH,-Si), and 1.9 p.p.m. (s, CH-Li); (4) 57.4, 54.5 
(s, CH,-N), 46.0 [s, N(-CH&I, 44.7 (s ,  N-CH,), 6.8 (s, CH,-Si), 
and -4.9 p.p.m. ( s ,  CH,-Li). 

(s, CH); (2) 58.4, 56.4 (s, CHZ-N), 46.5 [s, N(CH&], 44.2 ( s ,  N- 
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Scheme I ) ,  as well as molecular weight determinations in 
cyclohexane (Singer method). Both are monomeric, which is 
particularly surprising for the open shell compound (l), 
and contrasts with the dimeric structures found in [ {LiPh- 
(tmeda) }2]7 and [ (Li(bicyclo[ I . I  .O]butyl)(tmeda) As the 
ligand C'H(SiMe,), readily stabilises compounds of unusually 
low co-ordination n ~ r n b e r , ~  a monomeric structure of (1) pre- 
sumably has a steric origin. 

As CH(SiMe,), can be further lithiated at the tertiary carbon 
using LiMe in OEt, but not LiBu*(tmeda),l" we conclude that 
kinetic acidity increases in the sequence SiMe, < CH,(SiMe,), 
< CH(SiMe,),. 

The asymmetric unit of the structure of Li (CH(SiMe,), )- 
(pmdeta) comprises a single molecule of (2), there being no 
significant intermolecular contacts. Environments about the 
Li and C(K) atoms are best described as distorted tetrahedra 
(Figure 1 )  with the pmdeta configuration and bonding similar 
to that found i n  [ {Li(pmdeta) )2(PhCH-CHPh)].11 Of parti- 
cular interest in the alkyl group is the Si-C(a)-Si angle, 124(2)", 
which is splayed well above sp3 hybridised values, a distortion 
possibly resulting from SiMe, repulsions.§ The Si-C(a)-Li 
angles are also enlarged, but to a lesser extent. The terminal 
Si-C distances are unexceptional at 1.8, A with C(cx)-Si dis- 
tances somewhat low, 1.79(3) A, perhaps reflecting back- 
bonding from C(m) to Si d-orbitals. Although the accuracy of 
the structure is low and caution needs to be exercised in 
comparing i t  with other structures, the Li-C(cx) bond, 2.1 3(5)A, 
is not dissimilar to that found in ((2-lithio-2-methyl-2,3- 
dithian)(tmeda)),, 2.19 in which the very short Li-C 
distance, coupled with electron density analyses, was taken as 
evidence for a covalent, or, at most, polarised, Li-C bond. 

339.5, monoclinic, space 
group P2,/n, ( I  = 16.93(2), h = 15.173(5), c = 9.635(9) A, 
p = 102.42(8)", U = 2417(4) A3, 2 = 4, Dc = 0.93 g ~ m - - ~ .  
The structure was solved from 963 'observed' (out of the 2272 

Crystal data: C16H42LiN3Si2, M 

5 It compares with Si-C Si 123.2(9)" in CH,(SiMe,), (ref. 12) and 
117.2(4)' for CH(SiMe,),, (ref. 13) as determined by electron 
diffract ion. 

independent) diffractometer reflections measured to 28 = 40", 
R is 0.16.1 
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'1 The atomic co-ordinates for this work are available on request 
from the Director of the Cambridge Crystallographic Data 
Centre, University Chemical Laboratory, Lensfield Road, Cam- 
bridge, CB2 IEW. Any request should be accompanied by the 
full lilerature citation for this cornrnunication. Because of the low 
precision of the determination, a consequence of limited data and 
high thermal motion, the structure determination will not be 
reported elsewhere; the structure factor table is available as 
Supplementary Publication, No. SUP 23488, (7 pp.). For details 
of how to obtain this material see Notice to Authors, No. 7, 
J .  Chem. Suc., Dalton or Perkin Trans., 1980, Index Issues. 


